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Goal

� Detection & Recognition of a large number of 
object categories



Desired Properties

� Computational Plausibility: Fast indexing & 
matching

� Statistics driven learning: Unsupervised learning 
of object parts for compact & concise of object parts for compact & concise 
representation

� Robust detection: Flexible, yet accurate models 
� Fast, Incremental Learning: Easy addition of 

new object categories



Flat Representations

� Match each set of features to all object in the collection 
to find a good match

� Computationally demanding



Hierarchical Representations

� A natural framework for indexing & 
matching



Object Composition Hierarchy

� We wish to learn a hierarchical representation 
for the objects in an unsupervised manner

� Each object is made up of “parts” 
(compositionability)(compositionability)

� Parts appear in all levels of the hierarchy, where 
subsequent layers’ parts are compositions of 
parts from previous layers
� All but the most basic parts are composed of parts



Part Hierarchy Demonstrated



Hierarchy Structure

� Ln – n’th Layer
� Pn

i – i’th part of n’th layer, described by 
�Center of mass�Center of mass
�Orientation
�List of subparts from Ln-1 , with position & 

orientation relative to Pn
i.



Hierarchy Structure ctd.

� Central Part – one specific subpart from Ln-1 that 
indexes into Pn

i. Its location and orientation are 
defined as (0,0), 0 resp.
Contains a list of � Contains a list of 

� {Pn−1
j , αj , (xj, yj), (σ1j ,σ2j)}j,denoting relative 

orientation, position, and position variance  (via 
a gaussian) around (xj,yj ).

� Links – a list of all parts from Ln that this part 
indexes to.



Hierarchy Structure
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Initialization

� L1 is a set of local oriented filters: 
� 8 Odd Gabor filters, oriented at 45 degrees apart

� At multiple scales
� L1 parts are extracted from image via local maxima of filter 

responses (above threshold)
1 

responses (above threshold)

� Parts are denoted as {π1
i } i 

� πn
i = {Pi, αi, xi, yi} is a realization of part i from layer n, with the 

orientation & position at which it was found in the image
� Λn (πn

i ) – List of image locations to contribute to part πn
i



Indexing & Matching



Learning Part Hierarchy

� We’d like to reduce computational complexity, 
by:
� Choosing parts with few occurrences (reduces the 

subsequent matching process)
Create simple models (limit overall number of parts)� Create simple models (limit overall number of parts)

� Perform local inhibition to remove part redundancy
� Learn layers and links sequentially: 

� Perform voting for each layer
� Choose best composition of parts for higher layer

� In addition: Choose parts to cover images well



Incremental Learning of Layers

� L1 : Oriented Gabor filters
� Subsequent layers: Learn compositions 

with increasing complexity (no. of parts), with increasing complexity (no. of parts), 
called s-compositions. Limit s to 4;

� An s-composition Cn
s is made up of s+1 

parts (s parts + 1 central)



1-compositions

� Choose a part Pn−1
i with low avg. image frequency (Ni ), to 

be the central part. 
� Choose Pn−1

j  s.t. Ni ≤Nj . From the neighboring features 
(neighborhood size chosen to minimize information loss)

� Perform Local inhibition to disregard parts having low novelty over � Perform Local inhibition to disregard parts having low novelty over 
central part

� {Cn
s=1} ={Pn−1

i , {Pn−1
j ,mapj}} is the set of possible 1-

compositions.
� mapj – Spatial distribution of appearance of Pn−1

j
conditioned on Pn−1

i being the central part.
� Links(Pn−1

i ) – set of all compositions with Pn−1
i as the 

central part



Formation of spatial maps
Candidate Parts with a higher frequency

Local Inhibition

Find Peaks in Spatial 
Distribution

Central Part

Model as 
Gaussian Density



Spatial Maps

� (σ1j ,σ2j)} – represent the spatial 
variability of the distribution of Pn−1

j 

conditioned on the position of Pn−1
i



Spatial Maps ctd.

� probability for composition = sum of votes 
within area of variability / total inspected 
neighborhoodsneighborhoods

� Keep only statistically significant 1-
compositions: 
�Pr(Cn

1 )>>Pr(Pn−1
i )Pr(Pn−1

j )
�N(Cn

1) >threshn-1 



S-Subcompositions
� {Cn

s} = 
{Pn−1

i , {Pn−1
jm , (xjm, yjm), ((σ1jm,σ2jm)}m=1..s-1,{Pn−1

j,mapj}}

� i.e, build compositions using the previously learned s-1 compositions and 
one additional part. 

� mapj is updated whenever all parts forming a certain composition are 
found in the local image neighborhood.
Prune possible combinations similarly to 1-compositions.

Central 
part

Additional 

part

� Prune possible combinations similarly to 1-compositions.
� When no new decompositions pass the set statistical significance 

threshold, the layer learning ends.



Learning of S-subcompositions



Part Selection & grouping

� To control the complexity, compositions are 
removed if parts within them index too many 
parts in subsequent layers
Usually 10-20 links per part � Usually 10-20 links per part 

� Determined by computational resources
� Parts are deemed equal if average part overlap 

over set of images is large enough; this removes 
different yet perceptually similar parts



Learning process

� Lower layers: Category independent, containing 
parts shared among many object classes 
�Learn a union of image classes
Higher layers: Number of part combinations � Higher layers: Number of part combinations 
increases rapidly. On the other hand, part 
combinations “specialize” for object categories 
� learn for each category by itself



Results

� Learned a collection of 3200 images from 15 
categories (cars, faces, mugs, dogs…)

� Results are comparable with current 
approaches regarding object Localization for approaches regarding object Localization for 
single-scale, and slightly better for multi-
scale.



L2 ,L3 (non-specific)



L4 (category specific)
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Conclusions & Properties

Low-Level parts are mostly category 
independent
Mid-Level parts take on intuitive, familiar Mid-Level parts take on intuitive, familiar 
shapes (wheels, eyes, handles)
High levels still require supervision…
Number of indicative parts per image 
drops significantly for higher layers



Summary

� A hierarchical representation for efficient 
indexing & matching

� High level sparseness allows for a large � High level sparseness allows for a large 
number of visual categories

� Adding new objects is easy since most 
low-level features are shared between 
objects



Questions?


