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Goal

m Detection & Recognition of a large number of
object categories
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Desired Properties

m Computational Plausibility: Fast indexing &
matching

m Statistics driven learning: Unsupervised learning
of object parts for compact & concise
representation

m Robust detection: Flexible, yet accurate models

m Fast, Incremental Learning: Easy addition of
new object categories
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Flat Representations

m Match each set of features to all object in the collection
to find a good match

m Computationally demanding

car motorcycle dog person

Sanja Fidler and Ales Lecnardis. Learning Hierarchical Representations of Object Categories. EU Cognition maeting, Munich 2007
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Hierarchical Representations

m A natural framework for indexing &
matching

car motorcycle dog person

t hypotheses

| verification
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Object Composition Hierarchy

m We wish to learn a hierarchical representation
for the objects in an unsupervised manner

m Each object is made up of “parts”
(compositionability)

m Parts appear in all levels of the hierarchy, where
subsequent layers’ parts are compositions of
parts from previous layers

All but the most basic parts are composed of parts
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Part Hierarchy Demonstrated

@e ® )
W)

(/6@@@900

nua:&aune*annna /

unuﬂ_[md umop-doJ.

Bottom-up lLdming

( 00085000055
e LININ=LAL/7 L VNN




Hierarchy Structure

m L_—n'th Layer
m P".—I'th part of n’th layer, described by
Center of mass

Orientation

List of subparts from L, ,, with position &
orientation relative to P",
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Hierarchy Structure ctd.

m Central Part — one specific subpart from L, _; that
iIndexes into P, Its location and orientation are
defined as (0,0), O resp.

m Contains a list of

. {P_”‘lj 0 (Xj,_)_/j), (ot ,sz)_}j.,denoti_ng relative
orientation, position, and position variance (via
a gaussian) around (X;,y;).

m Links — a list of all parts from L, that this part
Indexes to.



Hierarchy Structure
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Initialization

m L, is asetof local oriented filters:

8 Odd Gabor filters, oriented at 45 degrees c=. Il .

m At multiple scales

m L, parts are extracted from image via local maxima of filter
responses (above threshold)

m Parts are denoted as {17, } .

m 7" = {P,;, a;, X, Y;} is a realization of part i from layer n, with the
orientation & position at which it was found in the image

m A\, (m,) — List of image locations to contribute to part ™.



Indexing & Matching

Algorithm 1 : Indexing and matching
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INPUT: {{7]" "}, A1 }US07ES
for each scale do
Macate = {}
for each 7.*:‘_1 = {P,fk_l iy Tiy Yi ) do
Rotate the neighborhood of .’-rf‘_l by angle —a;
for each part P" < Links(?ﬁ‘_l) do
Check for subparts of P™ according to their relative
positions and spatial variance

if subparts found then
add m" = {,;an by, Tg, y?;} to Iscate,

set A (") = [ JAn_1 (?T;“_l ), where Tr;]‘_l are
the found subparts of P™.
end if
end for
end for
end for

Perform local inhibition over {m;" }
return { {7 }., An}logetes

s=1
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Learning Part Hierarchy

m \We'd like to reduce computational complexity,
by:
Choosing parts with few occurrences (reduces the
subsequent matching process)

Create simple models (limit overall number of parts)

Perform local inhibition to remove part redundancy
m Learn layers and links sequentially:

Perform voting for each layer

Choose best composition of parts for higher layer

m In addition: Choose parts to cover images well



"
Incremental Learning of Layers

m |, : Oriented Gabor filters

m Subsequent layers: Learn compositions
with increasing complexity (no. of parts),

called s-compositions. Limit s to 4;
m An s-composition Cn.is made up of s+1
parts (s parts + 1 central)
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1-compositions

m Choose a part P with low avg. image frequency (N.), to
be the central part.

m Choose PL s.t. N <N From the neighboring features
(nelghborhood size chosén to minimize information loss)

m Perform Local inhibition to disregard parts having low novelty over
central part

m {C"_.}={P, {P"} ,map}} Is the set of possible 1-
compositions.

= map,— Spatial distribution of appearance of P,
conditioned on Pr-L .being the central part.

m Links(Prt ) — set of all compositions with Pr-1.as the
central part



Formation of spatlal maps

Candidate Parts with a higher fre

Local Inhibition

Find Peaks in Spatia
Distribution

Model as
Gaussian Density
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Spatial Maps

1-subcompositions

=1

rnose i —— % X e =

PH-J ___"-,__L‘

I 1‘_\
% n=1 =1 . >
pn-] i 3
1 fx
" 2n
b4

x {\_./ =

m (0,;,0,)} — represent the spatial
variability of the distribution of pr-2
conditioned on the position of p1,
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Spatial Maps ctd.

m probability for composition = sum of votes
within area of variabllity / total inspected
neighborhoods

m Keep only statistically significant 1-
compositions:
Pr(C", )>>Pr(P )Pr(P,)
N(C",) >thresh,,



S-Subcompositions c.w.

Additional
part

part
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ously learned s-1 compositions and

one additional part

m  map,is updated whenever all parts forming a certain composition are
found in the local Image neighborhood.

m Prune possible combinations similarly to 1-compositions.

m  When no new decompositions pass the set statistical significance
threshold, the layer learning ends.
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Learning of S-subcompositions

Algorithm 2 : Learning of s—subcompositions
1: INPUT: Collection of images
2: for each image and each scale do

3: Preprocessing:

4 process image with £ parts to produce {{m} }:, A1}

5: for k=2ton — 1do

6: {{7F b, Aw)d = Algorithm 1({{mF 1, Ar_1})

7: end for

Learning:

8: for each 77 ' = {P" 1 2., y:} do

9: for each CI' € Links(P" ') do
10: Find all parts 7! within the neighborhood
11: Match the first (s — 1)-subparts contained within the

subcomposition relative to the central part

12: Perform local inhibition: A(neigh.parts) :=

A(neigh.parts)\ | J A( found subparts). Keep
parts that have |A(7r”71)| > thresh - |;‘X(7r:‘71)|.
We use thresh = 0.5,

13: If all s — 1 subparts are found and s-th subpart ap-
pears anywhere in the neighborhood, update the spa-
tial map for the s-th subpart.

14: end for

15: end for

16: end for
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Part Selection & grouping

m To control the complexity, compositions are
removed If parts within them index too many
parts in subsequent layers

m Usually 10-20 links per part
m Determined by computational resources

m Parts are deemed equal if average part overlap
over set of Iimages Is large enough; this removes
different yet perceptually similar parts
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Learning process

m Lower layers: Category independent, containing
parts shared among many object classes
—>Learn a union of Iimage classes

m Higher layers: Number of part combinations
Increases rapidly. On the other hand, part
combinations “specialize” for object categories
-> learn for each category by itself
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Results

m Learned a collection of 3200 images from 15
categories (cars, faces, mugs, dogs...)

m Results are comparable with current
approaches regarding object Localization for
single-scale, and slightly better for multi-
scale.
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L, L (non-specific)
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L, (category specific)

faces

cars

mugs







Conclusions & Properties

+ Low-Level parts are mostly category

iIndependent

+ Mid-Level parts take on intuitive, familiar

.

shapes (wheels, eyes, handles)

ligh levels still require supervision...

+ Number of indicative parts per image

drops significantly for higher layers



Summary

m A hierarchical representation for efficient
Indexing & matching

m High level sparseness allows for a large
number of visual categories

m Adding new objects Is easy since most
low-level features are shared between
objects
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Questions?



